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Flutter of an Infinitely Long Panel in a Duct

Ronald J. Epstein,* Ramakrishna Srinivasan,* and Earl H. Dowell^
Duke University, Durham, North Carolina 27706

The aeroelastic stability is examined of an infinitely long panel of finite width enclosed in a duct such that both
the upper and lower surfaces of the panel are exposed to an inviscid, and compressible flow. The panel behavior is
accounted for by small deflection plate theory, whereas the aerodynamic forces acting on the panel are described by
the classical linearized small disturbance potential theory. As such, a self-consistent theoretical model is constructed
for the asymptotic behavior of the panel. Two panel boundary conditions are considered; the panel is assumed
to be either simply supported, or clamped along the side edges. For the simply supported case, rather extensive
numerical results have been obtained. The effects of Mach number, air/panel mass ratio, and duct dimension on
the flutter velocity are determined.

a
a*
b
c
CQ
c*
D
E
h
h*
hp
L
/
/*
M
m
P
t
U
U*
U*T
W
x
y
z
y

Nomenclature
speed of sound
a/c0
panel width
wave speed
reference wave speed, 2n(D/pmhb2)1/2

C/CQ
plate stiffness
modulus of elasticity
height of duct
nondimensional height of duct, h/b
panel thickness
panel length
wavelength
nondimensional wavelength, l/b
Mach number, U*/a*
number of modes
pressure
time
flow velocity
U/CQ
critical flutter velocity
panel deflection
streamwise coordinate
spanwise coordinate
coordinate perpendicular to plane of panel
separation constant
nondimensional dynamic pressure, /x£/*2

fluid density
panel density
velocity potential
frequency
(n/b)cQ

Subscripts

R = real
/
cr

= imaginary
= critical

I. Introduction

T HE aeroelastic stability is examined of an infinitely long panel
of finite width enclosed in a duct such that both the upper

and lower surfaces of the panel are exposed to an inviscid and
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compressible flow. The panel behavior is accounted for by small
deflection plate theory, whereas the aerodynamic forces acting on
the panel are described by the classical linearized small disturbance
potential theory. Two panel boundary conditions are considered; the
panel is assumed to be either simply supported or clamped along the
side edges. For the simply supported case, rather extensive numeri-
cal results have been obtained for the flutter velocity indicating the
effects of Mach number, air/panel mass ratio, and duct dimensions.

Mathematically, the present problem may be considered a gener-
alization of the problem treated by Do well1 dealing with an infinitely
long panel of finite width embedded in a baffle (rigid plane wall),
with the upper surface exposed to an inviscid flow. In turn, the prob-
lem considered by Dowell is related to the work of Dugundji2 et al.
dealing with an infinitely long, infinitely wide panel resting on an
elastic foundation. In the analyses discussed, as with the present
problem, the critical wavelength corresponding to the first onset of
instability is finite. The work by Miles3 is also of interest, though for
the geometry considered in Ref. 3, the flutter wavelength is found
to be infinite. As will be shown, for the present problem, the critical
wavelength is related to the panel width.

This type of panel structure can be considered an idealization
of that found in an intake duct of a gas compression-expansion
thrust device, such as a scram jet. In the physical case, however, the
duct length is finite. The possible consequences of the infinite panel
approximation are discussed later in the paper. Nevertheless, this
analysis is relevant to the design of the next generation of aircraft
engines, particularly the thrusters used on an hypersonic transport
aircraft such as the National Aerospace Plane (NASP). Additionally,
this analysis is not only relevant to aerospace applications, insofar
as it can offer insight into many other types of internal duct flow
problems; for example, such as those commonly found in nuclear
power plants.

The experimental database for this type of panel flutter is rather
limited. To summarize, a comprehensive experimental investigation
of panel flutter was performed by Dowell and Voss4 and another
set of experiments exploring low supersonic Mach numbers was
conducted by Muhlstein et al.5 and Gaspers et al.6 The experimental
database from the experiments is limited to relatively small panel
length to span ratios (L/b).

II. Problem Formulation
A. Simply Supported Case

The equation of motion of the panel is

34W 34W
(D

where the aerodynamic pressure on the panel p is determined from
the well-known Bernoulli equation

[ dip 3cp~\

"+"cL
(2)
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and where the velocity potential (p satisfies the equation

^ + 2U—^- + U2-~% = 0 (3)

The boundary conditions on the panel deflection at the wide edges
are

W(x, -b/2) = 0

W(x,b/2) = Q
d2W / ^dW / b\
l^T- -2)-° (4)

and at each end of the panel, W(oo, y), W(-oo, y) are finite. The
boundary conditions on <p are

_ dW 3W
z=o dt dx

for

= 0
Z=h/2

|v| < b/2 (5)

(6)
= 0

Z=-b/2,+b/2.

and (p is bounded at x -> +/ — oo.
A panel deflection is assumed of the form

(7)

The most general solution to the problem may be written as

V (8)

Thus, strictly speaking, we are making a further approximation by
limiting ourselves to the first term in the series; however, the error
introduced is small and the retention of higher terms in the series
seems hardly justified. Note that each term in the series Eq. (8)
satisfies the plate boundary conditions.

Consistent with the assumed panel deflection shape is a velocity
potential of the form

J(2n/l)(ct-X) (9)

Equations (3), (5-7), and (9) constitute a well-defined mathemat-
ical boundary-value problem for (p which may be solved by standard
methods as shown in the Appendix. Having determined <p, p may be
determined through Eq. (2). Actually, for the present problem, our
interest is not directly in p itself but rather in a weighted integral of
p over the panel span; that is, Eq. (1) will be solved by the substi-
tution of Eq. (7), multiplication by cos(ny/b), and integration over
the panel width (i.e., a Galerkin solution in the span wise variable).
Thus, Eq. (1) becomes

dyx -e,i(2ff//)(c/-x)«7 _ -2pcos —b (10)

In the Appendix it is shown that solving Eqs. (3), and (5-7) for (
using separation of variables and then by using Eq. (2) gives

m=0

-r \ 2

2jr/l)(ct-x)
(U)

The factor of two appears in the left-hand integral term of Eq. (11)
due to the pressure loading on both the upper and lower surfaces of
the panel.

Canceling out common factors and employing a suitable nondi-
mensionalization in Eq. (10), the characteristic equation is derived
as the vanishing of the coefficient of W:

where F and y are defined as

and

Equation (12) may be expressed in functional form as

(13)

In general, c* may be a complex number, c* = c*R + ic*r For c] > 0
the motion is stable; for c*j = 0 the motion is neutrally stable; and
for c*j < 0 the motion is unstable. In general, it is found that for
a given M, /x*, h/b, and l/b the motion is neutrally stable for U*
sufficiently small but becomes unstable for some U* sufficiently
large. Of special interest is the value of l/b for given M, //,*, and
h/b which gives the smallest U* for which unstable motion exists.
This defines the critical or flutter condition and the corresponding
values are designated U*r, /*r, and c*r. The values of f/*r (flutter
velocity), /*r (flutter wavelength) and c*r (flutter wave speed) have
been calculated for a range of //,* and M values.

B. Clamped Case
In this case, the governing equations remain the same [Eqs. (1-3),

(5), and (6)], however, the boundary conditions on the panel deflec-
tion are modified [Eq. (4)] to account for the change in curvature at
the panel boundary.7 As such, the boundary conditions on the panel
deflection at the wide edges are

W.(x, -b/2) = 0

(14)

A panel deflection is assumed of the form

W = W\l + cos (^

The most general solution to the problem, again, may be written as
Eq. (8). Making a further approximation, we limit ourselves to the
first two nonzero terms in the series; however, the error introduced is
small and as with the simply supported case, the retention of higher
order terms in the series seems hardly justified.

Consistent with the assumed panel deflection shape, the Eq. (9)
velocity potential is chosen. Again, Eqs. (3), (5), (6), (9), and (15)
constitute a well-defined mathematical boundary-value problem for
(p which may be solved by standard methods (see Appendix for
an example). Having determined <p, p may be determined through
Eq. (2). Actually, for the present problem, as with the previous
case, our interest is not directly in p itself but rather in a weighted
integral of p over the panel span; that is, Eq. (1) will be solved by
the substitution of Eq. (15), multiplication by [1 + cos(27ry/Z?)j,
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and integration over the panel width (i.e., a Galerkin solution in the
spanwise variable). Thus, Eq. (1) becomes

x -e = I dy (16)

Solving Eqs. (3), (5), (6), and (15), for <p using separation of variables
and using Eq. (2) it can be shown that

1 (s,-2X2oh* .1 ^ +

A20 (e-^»h* -

* I 1 \ "I±_iZ
* - 1) J2X21 (

Again, the factor of two appears in the right-hand integral term of
Eq. (16) due to the pressure loading on both the upper and lower
surfaces of the panel.

Canceling out common factors and employing a suitable nondi-
mensionalization in Eq. (16), the following characteristic equation
is derived as the vanishing of the coefficient of W.

_ _
/*2 ) /*2 ~ TT /*2

1

^
-2A2Q/** _ 1) 2X20** _ 1) "I

2x20** + i) J (18)

where

(19)

a) Top view

( 1 /
PANEL MOTION

b) Side view

c) Cross-sectional view

III. Numerical Results
Numerical results have only been obtained for the simply sup-

ported case. The clamped case has been left for future work; how-
ever, the methodology used for the simply supported case applies
equally well to the clamped case.

A. Incompressible Case (M = 0)
For the incompressible case it is possible to find an analytical

solution. One may solve Eq. (12) explicitly for

c* = 2U*F±

——
(/*)4 (20)

where F was previously defined in Eq. (12) and the following. Note
that for M = 0, F is only a function of/* and h*, but not c*; however,
this is not the case for M ^ 0 . The motion will become unstable,
c* < 0, when the quantity under the radical becomes negative, i.e.,
for

U* >
4 + (/*)2

-[16-£/*F(/*)2]5 (21)

The F function was found to converge rapidly, and only the first
few terms in the series were needed to provide sufficient accuracy.
Note that F < 0.

In Fig. 2, £/*r is plotted as a function of mass ratio for a fixed
duct dimension, h* = 1. The corresponding values of/*r and c*r are
shown in Figs. 3 and 4. The important points to note are the relative
invariance of c*r and the considerable variation that may occur in U*r
and c*T. It is seen that the critical flutter wavelength is on the order
of two times the panel width. Note also that c*r —> 0 as //, —> 0;
i.e., the flutter wave speed goes to zero as the mass ratio approaches
zero, and the instability becomes one of divergence. In other related
studies,1"3 this property has also been found.

Effect of Duct Dimension
It is interesting to examine the effect of duct dimension, namely,

the ratio of duct height to width (h*), on the preceding results which
correspond to an h* of unity. This is achieved by varying the value
of h* used in the F function. In Fig. 5, U*T is plotted as a function of
mass ratio for various values of h*. The corresponding values of /*r
and c*r are shown in Figs. 6 and 7. In the limit of large mass ratios, the
values of £/*r, /*r, and c*r approach constant values independent of
h*. Both t/c* and /*r are approximately two, whereas c*r approaches
unity. This limiting behavior seems to be consistent with the results
for an isolated panel,1 however, the limiting values for the present
analysis are slightly higher than those found in the isolated panel
case. This is due to the effect of the infinite rigid walls found at the
panel boundaries which is not accounted for in the isolated panel
analysis. Also, note that both U*T and c*r represent monotonically
increasing and decreasing functions of/?*, respectively. Whereas the

Fig. 1 Panel geometry.
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Fig. 2 Flutter velocity U*r vs mass ratio p,*.
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- Incompressible

Fig. 3 Flutter wavelength l*r vs mass ratio p,*.
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Fig. 4 Flutter wave speed c*r vs mass ratio /i*.
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Fig. 5 Flutter velocity U*r vs mass ratio /i* for various duct heights

dependence of /*r on h* is an increasing function until a duct height
ratio on the order of two, then becomes a decreasing function. The
limiting value of /*r for large h* is on the order of twice the panel
width and is relatively invariant with respect to mass ratio, whereas
C/c* and c*r display considerable variation as functions of mass ratio.
Again, this is similar to the isolated panel case. This behavior is
shown in Figs. 8, 9, and 10, which show U*t, /*r, and c*r plotted as
functions of h*. Clearly, /*r is not a monotonic function of /** until
very large mass ratios.

In general, the duct height changes the load transmitted to the
plate. As the duct height is decreased, the load transmitted to the plate
is increased. This seems physically plausible because as the duct
height decreases the energy in the system becomes more focused
on the plate. In the limit as the duct height becomes very large the
load on the plate is decreased, consistent with the results of Ref. 1.

-h* = 25

0.01 0.1 10

Fig. 6 Flutter wavelength /*r vs mass ratio /x* for various duct heights
/i*,M = 0.
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Fig. 7 Flutter wave speed c*r vs mass ratio /LA* for various duct heights
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Fig. 8 Flutter velocity U*r vs duct height h* for various mass ratios

B. Compressible Case (M ̂  0)
There are a several interesting mathematical and physical ques-

tions that arise with respect to the eigenvalue spectrum of the char-
acteristic equation, Eq. (12), for the compressible case. Many of
these are not of sufficiently general interest to warrant inclusion in
the present paper. Here, the discussion is restricted to those results
which describe the neutrally stable and unstable motions of the panel
and to those which are pertinent to the determination of the practical
flutter boundary.

For M ^ 0, F becomes a function of c*, /*, and M. Thus, for the
examination of the boundary between neutrally stable and unstable
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10

Fig. 9 Flutter wavelength l*r vs duct height h* for various mass ratios
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Fig. 10 Flutter wave speed c *r vs duct height h * for various mass ratios
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Fig. 11 Flow velocity C7* vs wavelength /*, p,* = 0.1.

Fig. 12 Wave speed c* vs wavelength /*,//* - 0.1.

motion for a panel, one may solve Eq. (12) readily by a graphical
method. In doing so, it is convenient to introduce the following
definitions:

(22)

(23)

(24)

A = ([/*-c*)2F(/i*)

Thus, Eq. (12) may be rewritten simply as

A(c", U", M, M*, /*) s S(c*, /*)

For fixed M, /*, and //,* (or U*), A and S are plotted as functions of
c* for various U* (or /i*). The intersections (multiple) of A and 5
determine the eigenvalues (multiple) of c*. However, for sufficiently
large U* (or /x*) no intersection is possible for real c*; and at c* val-
ues corresponding to acoustic resonant duct modes, no intersection
is possible for imaginary c*. At the highest value of U* (or /x*), for
which real values of c* are solutions, the curves A and S are tangent;
i.e.,

or, fromEq. (13),

dA
dc*

dc*

dc*
(25)

(26)

At this point, two of the eigenvalues have coalesced. Thus, the
boundary between stable and unstable motion is given by the two
conditions

£ = 0

and
dE_
dc*

= 0

(27)

(28)

Now varying /*, for fixed h*, M, and /^*: t/*r, /*r, c*r may now
be determined. Shown in Fig. 11 is the relationship between U*
and /* for various Mach numbers at a specified mass ratio. In all
cases, h* = 1. A smooth functional dependence of U* on /* is
evident, additionally, there is a global minimum present for U*.
This minimum represents the U* critical value (£/*r) for the specified
Mach number and mass ratio. As such, the associated /* value is the
critical value (/*r). By varying /z* and M, the complete £/c* curve may
be generated. Figure 12 shows the dependence of c* on /*. Again,
the c* curve is well behaved. The value of c* corresponding to the /*r
value is the c* critical value (c*r). The results of such calculations are
presented in Figs. 2-4 and Figs. 13-15 to show the effects of mass
ratio and Mach number on the (nondimensional) flutter velocity,
wavelength, and wave speed.

First consider £7C* . As shown in Fig. 2, f/c* decreases monoton-
ically with increasing p.*. Considering Fig. 13, for ^* -> oo, U*T
-> 1 for all M. For IJL* -* 0, t/c* -> oo for M < 1, and U*r remains
finite for M > 1, as discussed in Ref. 1. For M <$C 1, a better param-
eter than U*T (for small /^*) is a form of nondimensional dynamic
pressure, namely, A^,cr, as discussed in Ref. 1. One may conclude
that, for small /i*, when M <$C 1, ^bcr is approximately constant.
Whereas for M ^> 1, U*r is approximately constant. Also, for large
IJL*, U*r is essentially constant.

Now consider /*r. In Fig. 3, it is plotted as a function of //,* for
several M. As may be seen, /*r has a relatively small variation, in
fact, /*r -> 2 as IJL* -> oo or M -+ oo. Indeed, the critical flutter
wavelength is on the order of twice the panel width for all Mach
numbers and mass ratios, as depicted in Fig. 14. As pointed out in
Ref. 1, /* = 2 may be identified as the wavelength corresponding
to the minimum natural wave speed. Thus, the flutter wavelength is
approximately equal to that corresponding to the minimum natural
wave speed for all n? and M.

Now, consider the quantity c*r, see Fig. 15. In Fig. 4, c*r also is
shown as a function of //,* for several M. For ̂  —> oo, c*r -> 1
for all M. For n* -> 0, c*r -> 0 for M < 1, whereas c*r -> 1
for M > 1. In general, one may conclude that for M > 1, c*r is
relatively independent of /^*; whereas for M <^C 1, it is relatively
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Fig. 13 Flutter velocity U*r vs Mach number M.
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Fig. 14 Flutter wavelength /*r vs Mach number M.
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Fig. 15 Flutter wave speed c*r vs Mach number M.

invariant with M and is increasing monotonically with ju,*, as shown
in Fig. 15.

IV. Discussion of Analyses
Aside from the intrinsic interest which the present problem pos-

sesses, it is of considerable interest as a possible asymptotic solution
to the problem of a long, narrow panel of finite length in a duct-type
enclosure. Strictly speaking, it should be pointed out, what has been
done here is to construct a self-consistent solution for a long nar-
row panel in a duct using the technique described in Ref. 1. That is
to say, it has been shown that the critical modes have wavelengths
that are of the order of twice the panel width, and the effect of duct
height has been concluded to be merely a change in load intensity
transmitted to the plate. Thus, it would seem physically plausible
that the effect of end supports on a panel whose length is large com-
pared to its width should be negligible on these modes. This was
found to be true for a similar problem in Ref. 2. However, there is

no a priori certainty that this will be true. The question is raised as
to whether an infinitely long panel analysis is adequate to describe
the behavior of a long but finite length panel. Additional analyti-
cal work and experimental work is clearly needed, both to assess
the infinitely long panel model, as well as to consider alternative
means to attack the low aspect ratio plate problem. As discussed in
Ref. 7, for sufficiently high Mach number there are local (structural
boundary layer) leading- and trailing-edge effects that may erode
the accuracy of an infinitely long panel model.

V. Conclusions
The present work has described the flutter analysis of an infinitely

long plate of finite width in a duct with the upper and lower sur-
faces exposed to an inviscid, potential flow. The major results are
as follows.

1) A self-consistent theoretical model has been constructed for
the asymptotic behavior of a long, narrow panel of finite width in a
duct.

2) Numerical results have been obtained for flutter velocity (or
dynamic pressure) indicating the effects of Mach number and mass
ratio as well as duct dimension.

3) Additional work, both analytical and experimental, is needed
to determine the relationship between the results for an infinitely
long panel and a long but finite panel.

Appendix: Solution of the Aerodynamic Problem
Through Eqs. (3), (5), (6), (8), and (9), one can deduce the fol-

lowing boundary value problem for $:

where

(U - c/a)2 -

-c)cos(ny/b)W

&LJt=°

\y\

(Al)

(A2)

Using separation of variables, assume $(y, z) = F(y)G(z); then
Eq. (Al) becomes

(Fyy/F) + (GJG) + (2n/l)2[(U - c/a)2 - 1] = 0 (A3)

Let

Fyy/F = -X? (A4)

where AI is a constant of integration. From the third component of
Eq. (A2), it is seen that

(A5)
y=±f

The solution of Eq. (A4) is F — A cos^y) + B sin^y). Applying
boundary condition (A5) we see that B = 0 and A ̂  0, if and only
if

in = 2nn/b (A6)

for any n. Using only the even in y cosine terms for F(= W, match-
ing panel surface), it follows that

Fn = cos(2nny/b)

Now from Eqs. (A3) and (A6),

GZJG = 4,

where

(A7)

(A8)

(A9)
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It follows from the second boundary condition of Eq. (A2) that

= 0 (A10)a
and, therefore, solving Eq. (A8) and applying boundary condition
(A10), we find that

G(z) = (All)

where C is yet to be determined.
Now from the first of the boundary conditions of Eq. (A2), and

using Eqs. (A6) and (Al 1), we have

z=0

(A12)

from Eq. (A13). After integration and algebraic manipulation, $ is
determined to be

9 = -1)

(A14)

Utilizing Bernoulli's equation, Eq. (2), and recalling Eq. (9), one
may finally compute

- cos ,i(2*//)(c/-jc) (A15)

—&)«>-«<-(?)*
where we recognize that for every Fn, there is a corresponding A ln
and \in and for every \2n there is a corresponding Gn. It follows
that 0 = J2n

 FnGn- Now multiply both sides of Eq. (A12) by
cos[(2w7ry)/b] and integrate between — b/2 and b/2 to determine
Cn.

n=0 ~
llcos cos dv

(A13)

Using the orthogonality of cos[(2mny)/b], Cn is readily found
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